FOREST RESOURCE INVENTORY AND PLANNING

RÓBERT MARUŠÁK CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE JANUARY 30th - 31st 2019

FOREST MENSURATION

- One of the most fundamental disciplines within forest and related sciences
- Deals with the technical aspects of tree and forest stand measurements
- measurement of tree variables - DBH, height
- determination of form factor, age, basal area, tree volume
- estimation of biomass, total and merchantable stand volume
- Deals with relations among tree/stand variables; instruments and tools
- Provides information at stand, local, regional and national level for forest management planning, forest policy decision, ...

Van Laar, A., Akça A., 2007: Forest Mensuration. Elsevier

ESTIMATION

- Errors
- Absolute - how far is measurement (y) from true value (Y) $\quad e=y-Y$
- Relative - expresses how large the absolute error is compared with the true value $\quad e \%=\frac{y}{Y} * 100$
- Systematic error (bias) - consistent, repeatable error associated with faulty equipment or a flawed experiment design (fixed amount or a proportion, the same direction) - removable
- Random error - completely random, it is unpredictable and can't be replicated by repeating the experiment again (produce different values in random directions) - unrecoverable

ESTIMATION

- Bias

$$
B=\bar{e}=\frac{\sum_{i=1}^{n} e_{i}}{n} d^{2}
$$

- Precision - expresses closeness of the measurements to their mean (standard devitation)

$$
s_{e}=\sqrt{\frac{\sum_{i=1}^{n}\left(e_{i}-\bar{e}\right)^{2}}{n-1}}
$$

- Accuracy - combines bias and prediction and expresses the closeness of the observed measurements to their true value

$$
m_{y}=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}}
$$

ESTIMATION

- A - Bias? Precise? Accurate?
- B - Bias? Precise? Accurate?
- C - Bias? Precise? Accurate?
- D - Bias? Precise? Accurate?

- Is it possible to make precise and accurate from imprecise and inaccurate? Which one?

Erasmus+

DIAMETER (d, DBH)

- usually over bark diameter at a fixed distance from the base of the tree 1.30 m or $4.5 \mathrm{ft}(1.37 \mathrm{~m}) ; \mathrm{d}_{\text {o.b.; }} \mathrm{d}_{\text {u.b. }}$

Erasmus+

DIAMETER (d, DBH)

- Calipers

Erasmus+

DIAMETER (d, DBH)

- Measurement errors

BASAL AREA (g, BA)

- Cross-sectional area of the stem, either at breast height or at specified height above the base of the tree
- Derived from the tree diameter or from the stem circumference measured with a tape

$$
\begin{array}{ll}
B A=\frac{\pi}{4} d^{2} & m_{g}=2 m_{d} \\
B A=\frac{C^{2}}{4 \pi} & m_{g c}=2 m_{c}
\end{array}
$$

TREE HEIGHT (h)

- Distance between the top and base of the tree, measured along a perpendicular dropped from the top
- Merchantable height - upper point of measurement, which coincides with the limit of merchantability

TREE HEIGHT (h)

- Trigonometric principle

Measuring uphill

TREE HEIGHT (h)

- Hypsometers

Laser Vertex

Vertex
(ultrasound)

Silva

Suunto

HEC

FORM FACTOR (f)

- Is definied as stem volume, expressed as a proportionn of the volume of a cylinder of the same height, with a diameter equal to the stem diameter at the selected reference point

$$
f=\frac{\text { stem volume }}{\text { cylinder volume }}
$$

Erasmus+

ForHeal
 ROUNDWOOD VOLUME (v)

- to estimate parameters of volume equations and to construct volume tables

$$
\begin{aligned}
& v=g * l=\frac{\pi}{4} d^{2} * l \\
& v=v_{1}+v_{2}+\cdots v_{n-1}+v_{n} \\
& v=L^{\prime}\left(g_{1}+g_{2} \cdots g_{n-1}\right)+\left(g_{n} * l_{t}\right) \\
& v=\frac{\pi}{4} L^{\prime}\left(d_{1}^{2}+d_{2}^{2} \cdots d_{n-1}^{2}\right)+\frac{\pi}{4} d_{n}^{2} * l_{n}
\end{aligned}
$$

ROUNDWOOD VOLUME (v)

Huber - cross-sectional area at the midpoint

$$
v=g_{m} * l
$$

Smalian - cross-sectional area at the lower and upper end

$$
v=\frac{g_{u}+g_{l}}{2} * l
$$

Erasmus+

STACKED WOOD VOLUM (v)

- Volume is determand conversion factor applied to adjust for a free space between the roundwood logs (for example $1 \times 1 \times 1 \mathrm{~m}=$ approx. $0.60-0.70 \mathrm{~m}^{3}$)
- photos
- weight

$$
v=w * \rho
$$

for example 1 tonne $=420-500 \mathrm{~kg} / \mathrm{m}^{3}$ depending on the moisture (water
 content) and age

Erasmus+

TREE VOLUME (v)

- Volume
- stem volume, total tree volume (including branches), merchantable volume
- over or under bark

$$
v=g * h * f
$$

- estimation

$$
v=0.785 d^{2} * h * 0.45
$$

TREE VOLUME TABLES AND EQUATIONS

- number of entries and predictor variables of the volume function
- single-entry volume function - dbh
- two entries - dbh and height
- more entries - dbh, height + entry X (diameter at 30% of the height, height above ground of the base of the life crown, etc.)

$$
\begin{aligned}
& v=a+b * D B H^{2} * h \\
& v=a * D B H^{b} * h^{c}
\end{aligned}
$$

$$
v=a * D B H^{b}
$$

$$
v=a *\left(D B H^{2} * h\right)^{b}
$$

Merchantable volume proportion V5/V

Erasmus+

STAND VOLUME (V)

- Whole stand calipering
- Sampling - representative methods
- Mean tree volume
- Yield tables
- Estimation

STAND VOLUME (V)

- Whole stand calipering
- DBH measurement of all trees
- DBH classes ($2 \mathrm{~cm}, 4 \mathrm{~cm}$, etc.)
- Individual DBH - electronic caliper
- Height of samples (approx. 5 per dbh class)
- Strong correlation between height and DBH
- Time consuming measurement

STAND VOLUME (V)

- Height curve fitting

$$
\begin{aligned}
& h=1.3+a * e^{D B H / d} \\
& h=1.3+\frac{D B H^{2}}{b_{0}+b_{1} * D B+b_{2} * D B H^{2}} \\
& h=b_{0}+b_{1} * \ln (B D H)
\end{aligned}
$$

Erasmus+

STAND VOLUME (V)

- Volume of individual tree
- DBH and fitted height
- Using volume equation or volume tables
- Stand volume = sum of volume of individual trees
- Most precise method
- Electronic devices, softwares

Erasmus+

STAND VOLUME (V)

- Sampling
- Especially for large fprest units - to spare time and money
- Effective in evaluation of development
- Consists of n sampling units on which tree are measured or estimated

$$
\begin{aligned}
& \mathrm{N}=135 ; \mathrm{n}=15(\mathrm{I}=11 \%) \\
& \mu-\bar{x}=\Delta_{\bar{x}} \% \\
& V=V_{S P} \frac{100}{I \%}
\end{aligned}
$$

$$
n=\frac{t_{\alpha}^{2} * \sigma_{x}^{2}}{\Delta_{\bar{x}} \%}
$$

t_{α} - reliability coeficient (1.96)
σ_{x} - variability
Δ_{x} - accetable error

STAND VOLUME (V)

- Sampling methods
- plot sampling
- point sampling
- multistage sampling
- Plot size
- given radius ($r=7,10,13 \mathrm{~m} . .$.)
- given area ($a=100,500 \mathrm{~m}^{2}, \ldots$)
- Optimal size prduce higher precision for a given costs
- Plot shape
- circular
- smallest perimeter for a given plot size
- no right angles (one man work
- plot boundaries located by optical devices (Vertex)
- square (research)
- rectangular (plantation)

STAND VOLUME (V)

- Plot sampling

STAND VOLUME (V)

- Point sampling (angle count sampling, relascope sampling)
- Imaginary plot boundaries

A rod with a length of c units and cross-arm (blade) of 1 unit

$$
\frac{d_{i}}{r_{i}}=\frac{1}{c}
$$

Erasmus+

STAND VOLUME (V)

Plot area

Total basal area $\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$ of all $\boldsymbol{n}_{\boldsymbol{i}}$ trees with DBH $=\boldsymbol{d}_{\boldsymbol{i}}$

Converted into basal area $\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$ of all $\boldsymbol{n}_{\boldsymbol{i}}$ trees with DBH $=\boldsymbol{d}_{\boldsymbol{i}}$ per unit area (ha)

$$
A=\pi * c^{2} * d_{i}^{2}
$$

Basal area per unit (ha) of all counted

$$
G_{i}\left(m^{2} / h a\right)=n_{i} \frac{2500}{c^{2}}
$$

$$
G\left(m^{2} / h a\right)=N * B A F
$$ trees $\left(N=\Sigma n_{i}\right)$

Erasmus+

STAND VOLUME (V)

- BAF (depends on tree diameters on the forest stand)

$$
B A F=\frac{0.4046(\text { estimated } G / h a)}{n(\text { predefined avg.number of trees to be counted })}
$$

- How to derive BAF of any instrument

$$
B A F=2500 *\left(\frac{15}{500}\right)^{2}=2.25
$$

STAND VOLUME (V)

- Tree counting
- $\mathrm{IN}=1$
- Boundary = $1 / 2$
- OUT = 0

- Volume

$$
V=G * H * F
$$

For Heal
 MEAN DIAMETER, MEAN HEIGHT

- Quadratice mean diameter

$$
d_{g}=\sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}
$$

$$
d_{g}=\sqrt{\frac{\sum_{i=1}^{k} n_{i} * d_{i}^{2}}{\sum_{i=1}^{k} n_{i}}}
$$

- Mean height - height of the tree with the quadratice mean diameter - derived from the height curve

STAND DENSITY

- Current stocking (basal area) per hectare expressed as a percentage of volume (basal area), which is considered as a „normal" per hectare for a given species, age, thinning regime, ...

$$
\rho=\frac{V_{\text {real }}}{V_{\text {model }}}=\frac{G_{\text {real }}}{G_{\text {model }}}
$$

- Ratio of current and model number of trees (plantation)

$$
\rho=\frac{N_{\text {real }}}{N_{\text {model }}}
$$

GROWTH

- enlargement of dimension of live system by assimilation activity (Bertalanfy 1951)
- growth values y (parameters) can growth
- t-age
- U - environment (water, precipitation, temperature, nutrients, CO2, ...)

$$
y=\mathrm{f}(t, U) \quad \Longrightarrow \quad y=\mathrm{f}(t)
$$

Erasmus+

GROWTH

- growth curve
- sustainable increasing (no decline) - at least monotonous
- S-shape
- asymptotic behaviour
- when $\mathrm{t}=0$ then $\mathrm{y}=0$
- when $\mathrm{t}=$ tmax then $\mathrm{y}=$ ymax
- at least one inflexion point

Erasmus+

GROWTH

- Korf (1939)

$$
y=A * e^{\frac{k}{(1-n) t^{n-1}}}
$$

- Richards \& Chapmann (1959)

$$
y=y_{\max } * e^{a\left(1-e \frac{c}{1-m} t^{-m}\right)}
$$

INCREMENT

- enlargement of growth value $\left(i_{y}\right)$ - diameter, height, basal area, volume
- current - difference of value (y) in different times - time period ($t 1-t 2$)
- annual (CAI)

$$
C A I=y_{t}-y_{t-1}
$$

- periodic (CPI) for period n

$$
C P I=y_{t}-y_{t-n}
$$

- mean - divide of value (y) and time period (n) when this value has grown
- annual (MAI) - mean anual growth during the whole growth period (life) from age 1 to age t (present age)
- periodic (MPI)
- Final (FMI) - volume

$$
\mathrm{M} A I=\frac{y_{t}}{t}
$$

$$
F M I=\frac{y_{r}}{r}=\frac{V_{r}}{r}
$$

INCREMENT

- Total volume production (TVP) the total production of timber volume from a forest stand from the time of establishment up to a given age

$$
\begin{aligned}
& T C I=\frac{y_{t}-y_{t-n}}{n}=\frac{T V P_{t}-T V P_{t-n}}{n} \\
& T M I=\frac{y_{t}}{t}=\frac{T V P_{t}}{t}
\end{aligned}
$$

FOREST PLANNING

- Forest models
- Normal (regulated) forest
- Selection forest
- The idea is to secure balanced and sustainable harvest for a long time
- Cut = increment

rasmus+

FOREST PLANNING

- Selection forest
- DBH distribution, no age
- Target diameter, no rotation age
- Permanent ingrowth (I)
- Inventory on permanent plots

$$
T C I=V_{t}-V_{t-n}+C u t-I
$$

OPTIMAL SOLUTION

- To find optimal solution
- Maximise production or minimise costs
- Take into acount constraints
- LP models
- very general optimization technique
- designed and used primarily to solve managerial problems
- applied to many different problems inclusive forest planning

Buongiorno J., Gilless J., 2003: Decision Methods for Forest Resource
Management. Academic Press
Erasmus+

OPTIMAL SOLUTION

- Poet and his wood
- he was allowed to buy (10 years ago) a cabin and 90 ha of woods
- he needs to walk the woods to keep his inspiration alive (muses do not always respond = sales from the woods can replenish empty wallet)
- he does not want to spend more than half of his time in the woods (the rest is for prose and sonnets)

OPTIMAL SOLUTION

- He has read about linear programming and desided to allocate scarce resources to optimize certain objectives
- Data
- 40 ha of the land are covered with red-pine
- 50 ha contain mixed hardwoods
- since he bought these woods he has spent approx. $\mathbf{8 0 0}$ days managing the red-pine and $\mathbf{1 5 0 0}$ days on the hardwoods
- the total revenue $\mathbf{\$ 3 6 , 0 0 0}$ from red-pine land and $\mathbf{\$ 6 0 , 0 0 0}$ from the hardwoods

OPTIMAL SOLUTION

- Problem formulation
- the poet's objective is to maximize his revenues from the property (finite revenues $=$ mean revenues per unit of time - year)
Max Z = \$ of revenues per year
- Revenues (Z) arise from managing red-pine, or hardwoods, or both. Therefore, set of decision variables is:

$$
\begin{aligned}
& X_{1}=\text { the number of hectares of red-pine to manage } \\
& X_{2}=\text { the number of hectares of hardwoods }
\end{aligned}
$$

- We seek the values of $\boldsymbol{X}_{\boldsymbol{1}}$ and $\boldsymbol{X}_{\boldsymbol{2}}$ that make \boldsymbol{Z} as large as possible

OPTIMAL SOLUTION

- Objective function
- the expresses the relationship between Z and the decision variables X_{1} and X_{2}
- he has earned $\mathbf{\$ 3 6 , 0 0 0}$ on $\mathbf{4 0}$ ha of red-pine and $\mathbf{\$ 6 0 , 0 0 0}$ on $\mathbf{5 0}$ ha of hardwoods during the last 10 years (average earnings have been 90\$/ha/y for red-pine, 120\$/ha/y for hardwoods)

$$
\begin{gathered}
\operatorname{Max} Z=90 X_{1}+120 X_{2} \\
(\$ / \mathrm{y}) \quad(\$ / \mathrm{ha} / \mathrm{y}) \quad(\$ / \mathrm{ha} / \mathrm{y})
\end{gathered}
$$

Erasmus+

OPTIMAL SOLUTION

- Land constraints
- the area managed in each forest type cannot exceed the area available

$$
\begin{aligned}
& x_{1} \leq 40 \text { ha of red pine } \\
& x_{2} \leq 50 \text { ha of hardwoods }
\end{aligned}
$$

OPTIMAL SOLUTION

- Time constraints
- expression of the constraint limiting this time no more than 180 days:

$$
\underset{(\mathrm{d} / \mathrm{ha} / \mathrm{y})(\mathrm{ha})}{2} \mathrm{X}_{1}+\underset{(\mathrm{d} / \mathrm{ha} / \mathrm{y})}{3} \underset{(\mathrm{ha)})}{\mathrm{X}_{2}} \leq \underset{(\mathrm{d} / \mathrm{y})}{180}
$$

- Non negativity constraints
- none of the decision variables may be negative, since they refer to areas

$$
X_{1} \geq 0 \quad \text { and } \quad X_{2} \geq 0
$$

Erasmus+

OPTIMAL SOLUTION

- Final model
- find the variables X_{1} and X_{2}, which measure the number of hectares of red-pine and of hardwoods to manage, such that

$$
\begin{aligned}
& \operatorname{Max} Z=90 X_{1}+120 X_{2} \\
& \text { subject to: } \\
& X_{1} \leq 40 \\
& X_{2} \leq 50 \\
& 2 X_{1}+3 X_{2} \leq 180 \\
& X_{1}, X_{2} \geq 0
\end{aligned}
$$

Erasmus+

