

Co-funded by the Erasmus+ Programme of the European Union

Occupational Safety and Health in Forestry

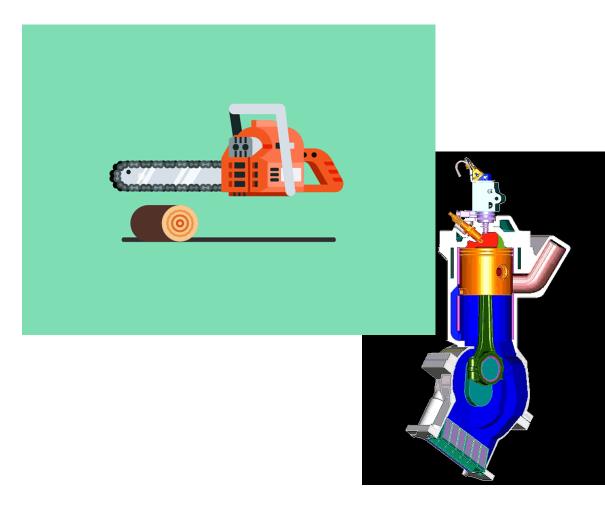
Martin Jankovský

Czech University of Life Sciences

January 23, 2019

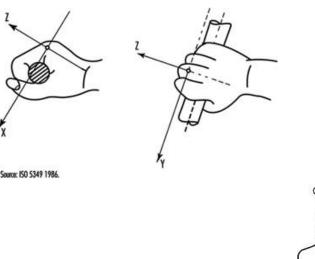
ForHeal

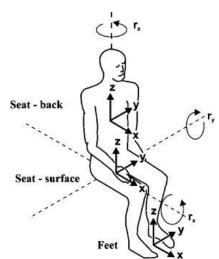
ForHeal


Safety

CHAINSAW OPERATOR VIBRATION EXPOSURE

ForHeal




Vibration

- Oscillation motion of a body around an equilibrium point
- Oscillation motion: change of direction and acceleration and deceleration of a body at various points of the path
- Similar to noise in its nature: both are mechanical oscillations
- Can be a manifestation of the functional part of a system, its drive gear or both – chain saw

- Vibrations in the environment are undesirable: human body is not adapted to them
- They are a hazard to the life of workers
- They decrease the productivity
- Depending on their direction, we know:
 - Vertical
 - Horizontal
- Depending on the place of transmission, we know:
 - Hand-arm transmitted vibrations
 - Whole-body vibrations
 - Locally transmitted vibrations

For Heal Effects of vibrations on human body

- Their effects depend on the place of transmission and their characteristics
- All vibrations can cause: loss of balance, blurred vision, inability to focus, premature fatigue

Whole-body vibrations

- Negative effects on spine
- Deteriorate intervertebrate discs
- Degenerate vertebrae
- Cause osteoarthritis
- Cause digestion problems
- Cause migrains
- Cause hemorhoids

Hand transmitted vibrations

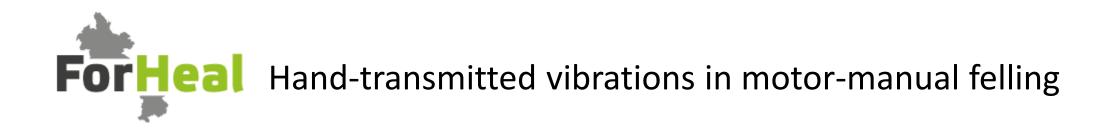
- Damage the vascular system
- Damage the peripheral nervous system
- Cause vasoneurosis
- Damage the nerves of the hand
- Cause muscle diseases
- Cause bone and tendon diseases (mainly vibrations up to 50 Hz)

- Protection against vibrations is regulated by the Government regulation n. 272/2011 Sb. On health protection against undesirable effects of noise and vibrations
- GR set the limits for vibration exposure
- The exposure limit for hand transmitted vibrations is

 $- a_{hv, 8h} = 2.5 \text{ m s}^{-2}$

Forgeal Vasoneurosis: whitefinger disease

- Vascular disease caused by vibrations
- At first, it affects the distal phalanges of the fingers
- Cold environment aids development
- Whitening persists until blood-vessels are expanded by heat
- The effects are
 - Loss of finger sensitivity
 - Tingling sensation in fingers
- After whitening, gradually fingers turn blue and gangrene sets in (very unlikely)


	Stage	Description					
0	-	- No whitening attacks					
1	Light	Seldom attacks affecting the distal phalanges of one or more fingers					
2	Moderate	Seldom attacks affecting the distal and intermediate phalanges (very rarely even proximal) of one or more fingers					
3	Severe	Frequent attacks affecting all or most fingers					
4	Very severe	Same to stage 3, with changes to the skin on proximal phalanges					

- Damage of the nerves has similar symptoms as vasoneurosis
 - The cause of the symptoms is different: decreased ability of the nerves to transmit the impulse
- Muscular diseases
 - Connected mainly with grip locked grip or insufficient grip
- Tendon inflammation

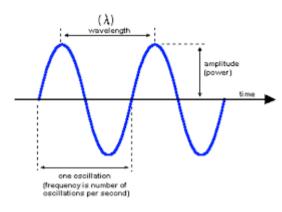
Normalized acceleration of chain saw vibrations based on the species being cut (in $m s^{-2}$)

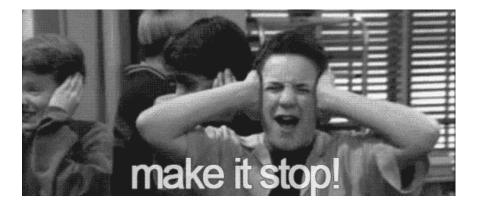
			Husqvarna 346 XP			Husqvarna 357 XP			Husqvarna 372 XP			
Spe	cies	Handle	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	
		Rear	4.0	3.7	4.4				3.5	3.2	3.7	
Рор	olar	Front	4.9	4.4	5.9	5.9	5.5	6.4	4.1	3.6	4.4	
		Rear	3.8	3.5	4.2	4.3	4.1	4.8	3.4	2.8	4.2	
Spri	uce	Front	5.0	4.3	6.1	5.7	5.2	7.1	4.4	3.5	6.6	
		Rear	6.3	5.5	7.1	5.2	4.7	5.7	4.4	4.0	5.2	
Bee	ech	Front	7.4	6.8	8.4	6.6	6.1	7.2	5.8	4.9	7.9	

• Exposure of chain saw workers to vibrations exceeds the legislation limit considerably

• How can they protect themselves against vibrations?

- Decrease the duration and level of exposure to vibrations
- Follow strictly the appropriate work/rest regime
- Use personal protective devices
- Keep hands warm and dry


Safety


CHAINSAW OPERATOR NOISE EXPOSURE

ForHeal

- Sound: mechanical oscillation of an elastic environment
- Expresses as the relative change of pressure in the environment, creates waves that compress and dilute the environment
- Noise is a subset of sound: unpleasant or obnoxious sound

- Risk of hearing impairment is the function of total energy received by the hearing apparatus
 - Intensity of noise
 - The duration of the exposure
- Causes of noise:
 - Flow of gasses or liquids molecule movement
 - Vibration of machine parts
 - Mutual friction of bodies
 - Mutual impact of bodies

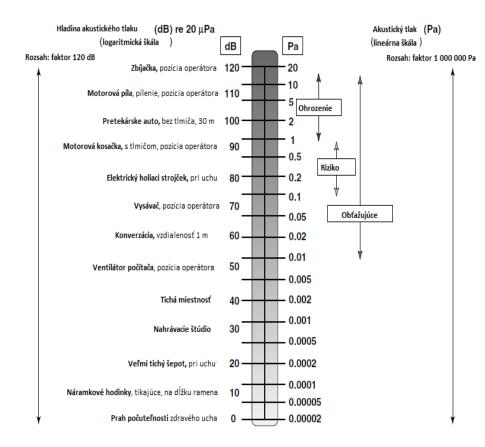
- Acoustic pressure (p) mechanical waves, which causes the occurrence of oscillation of the pressure of the environment. Human ear can sense acoustic pressure between 20–100 000 000μPa.
- Level of acoustic pressure (L) decuple of the common logarithm of the ration of the acoustic pressure (p) and the reference value (p₀) (the smallest audible acoustic pressure of 20μPa)

$$L = 10 * \log(\frac{p}{p_0})^2 \ [dB]$$

- Level of sound A (L_A) is the level of acoustic pressure corrected by the frequency weight filter A
- Equivalent noise level A (L_{Aeq}) is the characteristic given by time distribution of the L_A :

$$L_{Aeq} = 10 \log \frac{1}{T} \int_{t1}^{t2} \left[\frac{p_A(t)}{p_0} \right]^2 dt \ [dB],$$

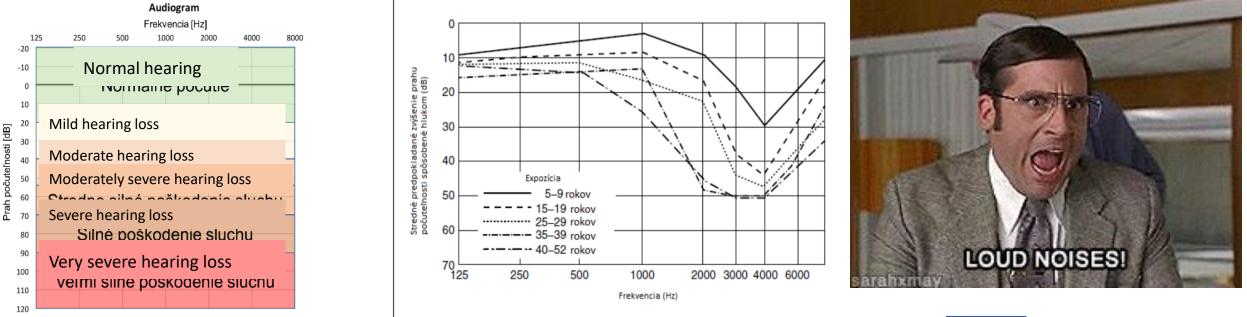
where


 $p_A(t)$ – temporal function of the instantaneous acoustic pressure weighed by A filter [*Pa*],

T – duration of the integration, $T=t_2-t_1$.

 P_0 – reference acoustic pressure of $20\mu Pa$

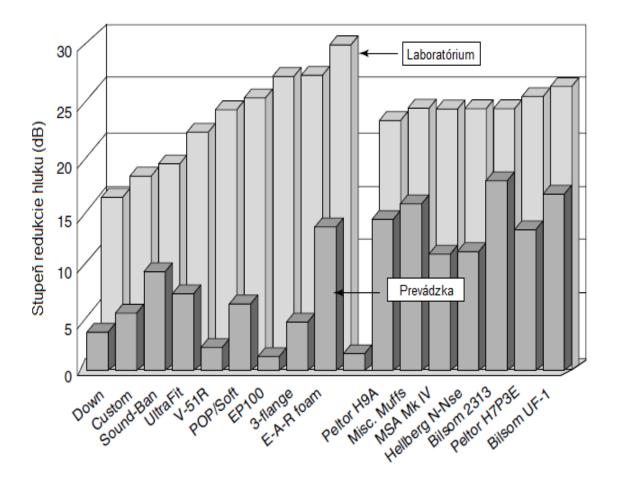
- The most common unit in acoustics is the decibel
- It is a logarithm of the ratio of one characteristic and a reference characteristic of the same type
- The range of 0-120dB includes the range of 1 000 000 Pa
- Increase of sound level by 6dB means the energy received by the ear doubles



- Long-term stimulation of the hearing apparatus causes its fatigue
- Temporary or permanent hearing threshold shift can occur
- At extreme noise levels, acoustical trauma can occur
- Deterioration of mental and physical performance
- Mental lability
- Decreased ability to focus (increased risk of accident)

- Exposure to noise has cumulative effects
- Hearing threshold shift occurs gradually, frequently the problem is handled only when it is already late

- Hearing protection is regulated by the Government regulation n. 272/2011 Sb. On health protection against undesirable effects of noise and vibrations
- GR set the limits to noise exposure
- Permissible exposure limit for steady and variable noise is L_{Aeq. 8h}=85 dB
- Permissible exposure limit for impulse noise is set by the peak noise level L_{Cpeak}=140 dB



- Noise dampening working procedures help
- Select appropriate work tools with low noisiness
- Decrease the noise by technical means (shields, veils, covers, insulations, etc.)
- Change the work organization focused on limiting exposure
- Use hearing protection devices

- Using HPDs is the last instance in hearing protection
- The range of dampening varies a lot
- The employer is obligated to give hearing protection to its employees
- Protectors have to be designed in such way that they dampen the noise and at the same time enable hearing the warning signals

Safety

CHAINSAW OPERATOR ENERGY EXPENDITURE

ForHeal

- The extent of muscular strain correlates with changes of the circulatory and respiratory systems
- Energy expenditure can be observed by
 - The change of hear rate
 - Measuring the volume of exchanged air (ventilometry)
 - Analyzing the respiratory gasses (indirect calorimetry; the most precise method)

Muscle output	Heart rate [BPM]	Mean systolic volume [ml]	Mean minute output volume [I]	Minute lung ventilation [l]	Minute oxygen consumption [I]	Minute energy expenditure [kJ] (gross)	
Rest (seated)	70	70	4.9	6–8	0.2–0.3	4.2–6.3	
Small	75–95	85	7.0	9–15	0.4–0.8	6.7–16.7	
Mild	96–115	105	11.0	16–22	0.9–1.2	17.2–25.1	
Moderate	116–130	120	14.5	23–30	1.3–1.8	25.5–37.6	
Large	131–150	140	19.5	31–40	1.9–2.4	38.1–50.2	
Very large	>151	>150	>22.0	>41	>2.5	>50.7	

- The measure of loading of dynamic physical work
- Given by the limit of permanent output, cca 33% of the aerobic capacity $V_{\rm O2,\,max}$
 - About 3.1 *I min⁻¹* for men and 2.05 *I min⁻¹* for women
 - It is the mean loading that a healthy person can manage per shift without greater fatigue or overloading

		Heart rate							
	N 41	Max	Mean			Min	Max	Mean	
Forest harvesting	Min							gross	net
	W			kJ min ⁻¹	kcal min-1	BPM			
Walking with a chain saw (summer)	224.3	301.3	260.7	15.6	3.7	106.7	115.0	109.7	33.0
Walking with a chain saw (winter)	269.3	407.0	344.7	20.5	4.9	116.3	129.0	122.0	44.7
Felling	195.0	356.0	271.0	16.2	3.9	108.0	128.0	114.0	38.0
Limbing	258.0	381.0	317.0	19.0	4.5	112.0	129.0	120.0	43.0
Measuring	189.0	277.0	219.0	13.1	3.1	106.0	112.0	109.0	32.0
Bucking	204.0	377.0	284.0	17.0	4.1	105.0	119.0	111.0	34.0
Carrying stackwood	314.0	475.0	373.0	22.4	5.4	111.0	142.0	127.0	49.0
Skidding with LKT 81, drive unloaded	100.0	162.0	144.0	8.6	2.1	78.0	88.0	84.0	14.0

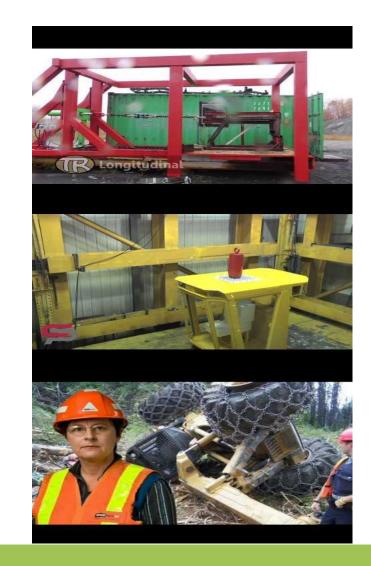
asiliust

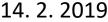
• Doplnit energeticky vydaj pre ine pracovne pozicie ako pilcik

14.2.2019

U VÍCEOPERAČNÍCH TECHNOLOGIÍ

SAFETY AND HEALTH IN CTL TECHNOLOGIES


ForHeal


For Heal Machinery design requirements

• Cab

14. 2. 2019

- Suspension according to ISO 8797
- Controls adjustable to operator physiology
- Cab entry/exit designed according to anthropometric data
- Cabs equipped with ROPS and FOPS systems (min. ISO 3471; 8082; 8083)
- Cabs equipped with first aid kit, fire extinguisher

Drive and operational systems

- Engine equipped with an immediate stop system
- Starter connected to the clutch or gear box, to prohibit starting with gear in
- Exhaust equipped with spark catcher (not applicable to turbo charged engines)
- Mininmum 20% of machine weight must load the steering axle

Forgeal Machine operation and maintenance

- Operator must be a holder of all necessary certificates
- Operator must have seat belt on during machine operation
- Nobody besides the operator can be in the cab
- Before hydraulics systems maintenance
 - Make sure the system is shut down, pumps disengaged, system pressure released
- Mandatory PPE for harvester and forwarder operators
 - Safety boots
 - Closely fitting clothes
 - Safety helmet
 - Noise protectors over ear

14.2.2019

14.2.2019

For Heal Mechanized harvesting and timber handling

- Reserve harvest for terrains that ensure machine stability
- Work organization
 - Recommend using other than standard shifts
 - Rotation of employee activities, optimization of shift duration, etc.
 - Helps mental overexertion, muscle problems, etc.
- If possible, refrain from lateral slopes
- Functional parts of the machines must be in safe position before drive
- Pile processed timber so that chance of spontaneous movement is minimized
- Park on level surfaces, with park gear and brake engaged

Forgeal Timber forwarding

- Load should be of similar length
- Do not work in slopes greater than 35%
- Minimize drive in lateral slopes
- Loading adjusted to local conditions
- Check brake function and engage differential lock before steep downhill drive

Ergonomics in forestry

- Understanding of human behavior and interactions with socio-technical systems and their application when designing the work environment
- Need to apply ergonomic processes in forestry
- Forestry dangerous sector
 - Work in exterior
 - Rough terrains
 - By dangerous tools
 - Fatal accident risk 2x higher than in construction industry

- Set of all conditions in which work is done
- Factors are varied in character; divided to:
 - Physical
 - Chemical
 - Biological
 - Psychosocial
 - Economic
- Some factors cannot be influenced in forestry
- Synergies of multiple factors occur
- In forestry, evaluation and adjustment of mainly:
 - Vibro-acoustic component of the work environment

14. 2. 2019

MODELS OF COMPLEX LOADING BY THE WORK ENVIRONMENT

ForHeal

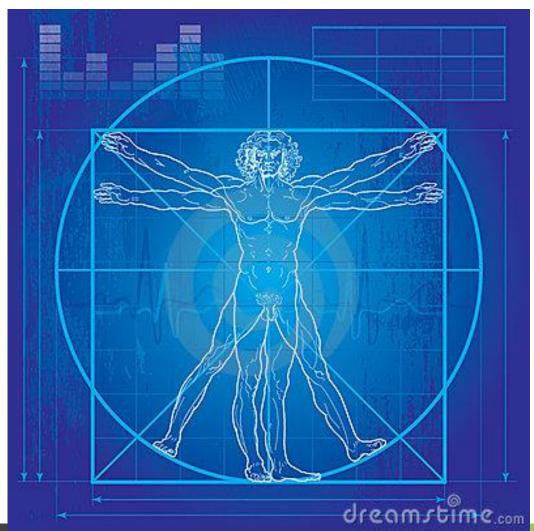
- Construction of a mathematical model for prediction of complex loading by the work environment
 - Select factors that explain the relationship between the worker and work environment,
 - Select a mathematical model suitable for such evaluations of the work environment,
 - Measure data with sufficient quality for statistical evaluation,
 - Construct a model, verify it for suitability in teaching and practice

Factors of the work environment

Selection of independent variables

Personal traits of the operators

ForHeal


Forgeal Factors of the work environment

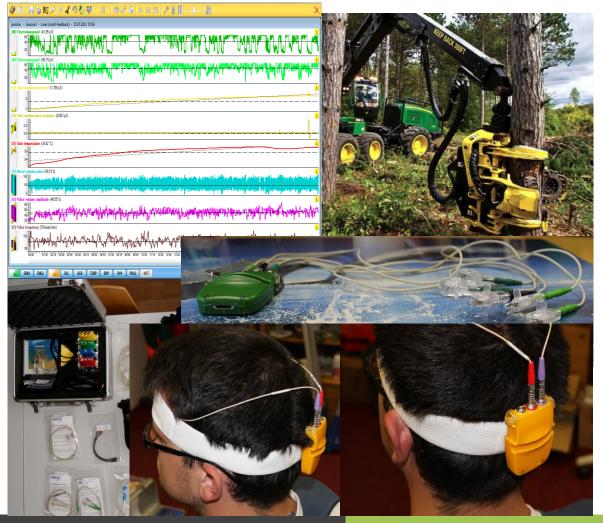
- Whole-body vibrations
 - X_1 Normalized accel. of vibration $a_{wbv, 8h, a}$ (m.s⁻²)
 - Noise exposure
 - X_2 Equivalent noise pressure level $L_{eq, a}$ (dBA)
 - X_3 Peak noise pressure level $L_{CPk, c}$ (dBC)
- Microclimate
 - X_4 Operativní teplota v kabině stroje t_o (°C)
- Illumination in the cab
 - $-~X_{5}$ mean illuminance in the cab E_{mean} (lx)
- Mental loading
 - X₆ Meister questionnaire

- X₇ Age (y)
- X₈ Weight (kg)
- X₉ Height (cm)
- X₁₀ Experience (y)

Requirements

Selection of the response variable

Variable selected


ForHeal

- Reacts to all independent variables
- Changes reflect the degree of health risk
- Measurable
- Method of risk evaluation available

ForHeal

- Binary variable "Work risk"
- Based on the heart rate of the workers
- Evaluation of "Work Risk" according to GR 542/2007 Z.z.

Measurements

Method

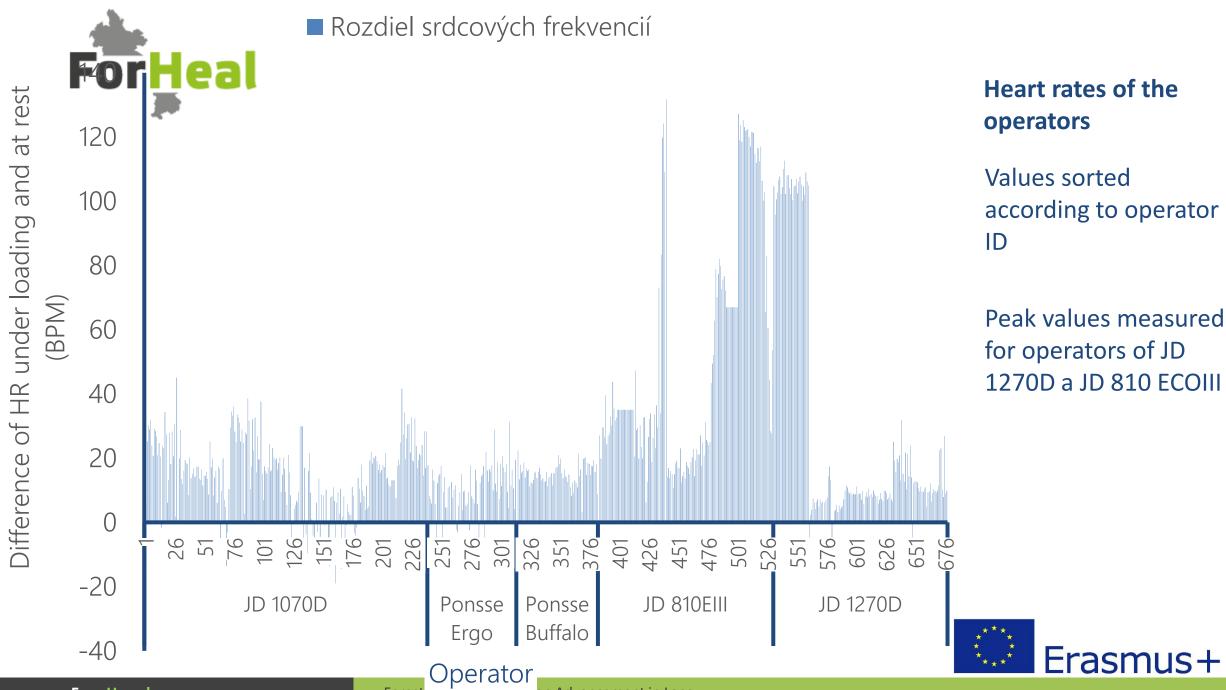
ForHeal

- Measurement at full operation of the machines
- Data collection throughout the shift
- Three measurement procedures
 - Continuous
 - Noise
 - Sampling
 - Heart rate
 - Whole-body vibrations
 - Microclimatic conditions
 - Illumination
 - Questionnaire survey
 - Mental loading
 - Personal traits of the operators

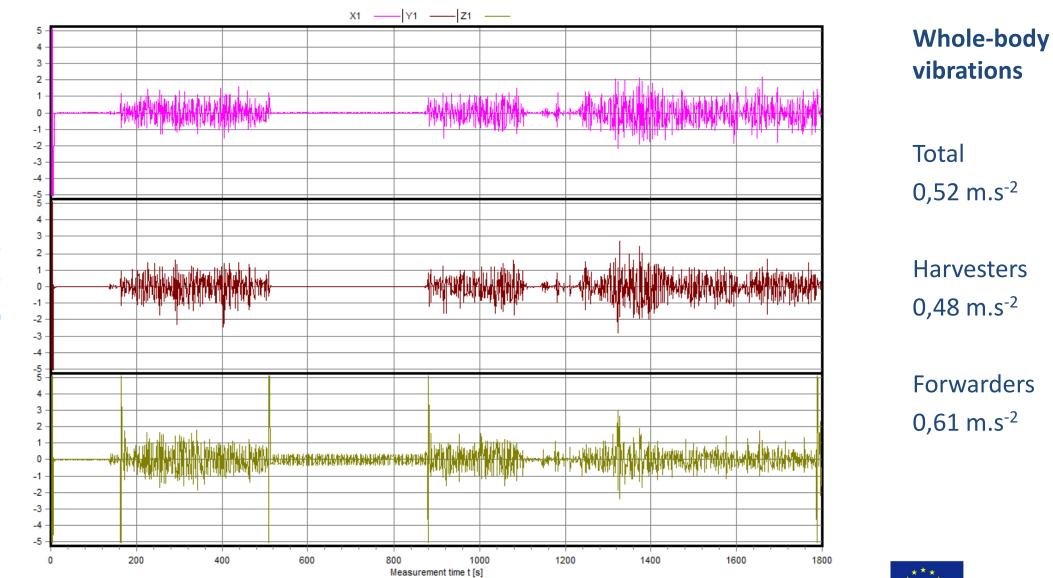
Heart rate

Vibrations

Noise

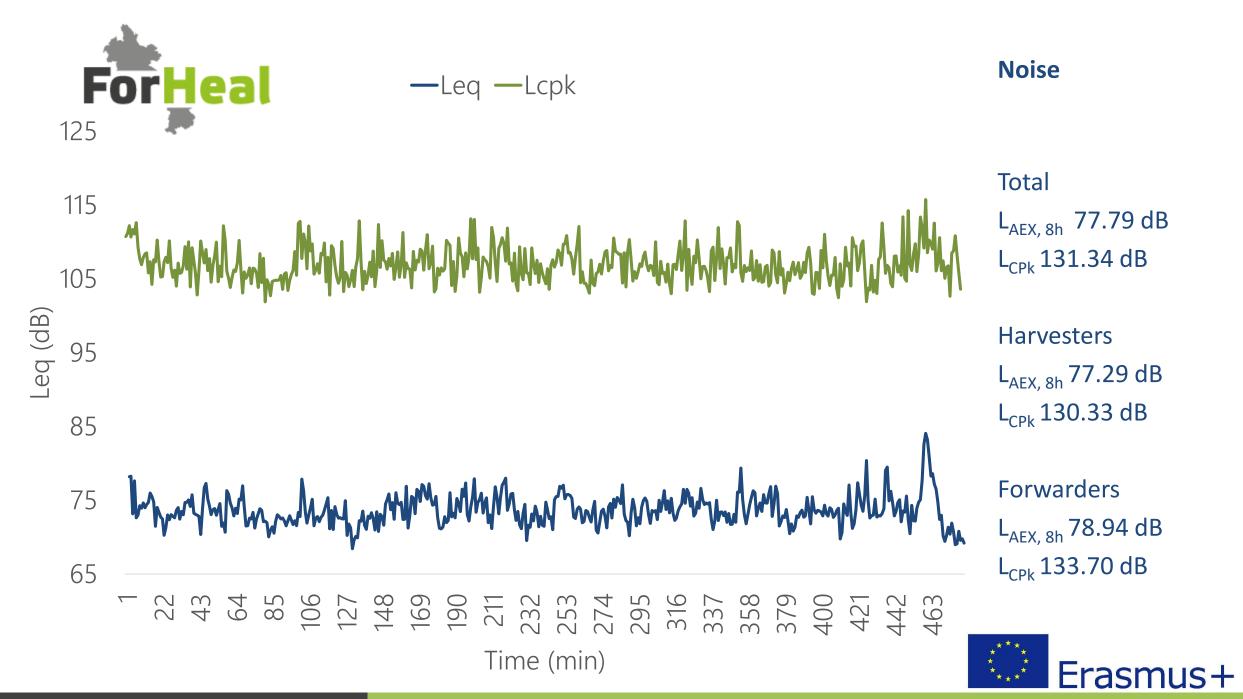

Data processing and measurement outcomes

Microclimate


Illumination

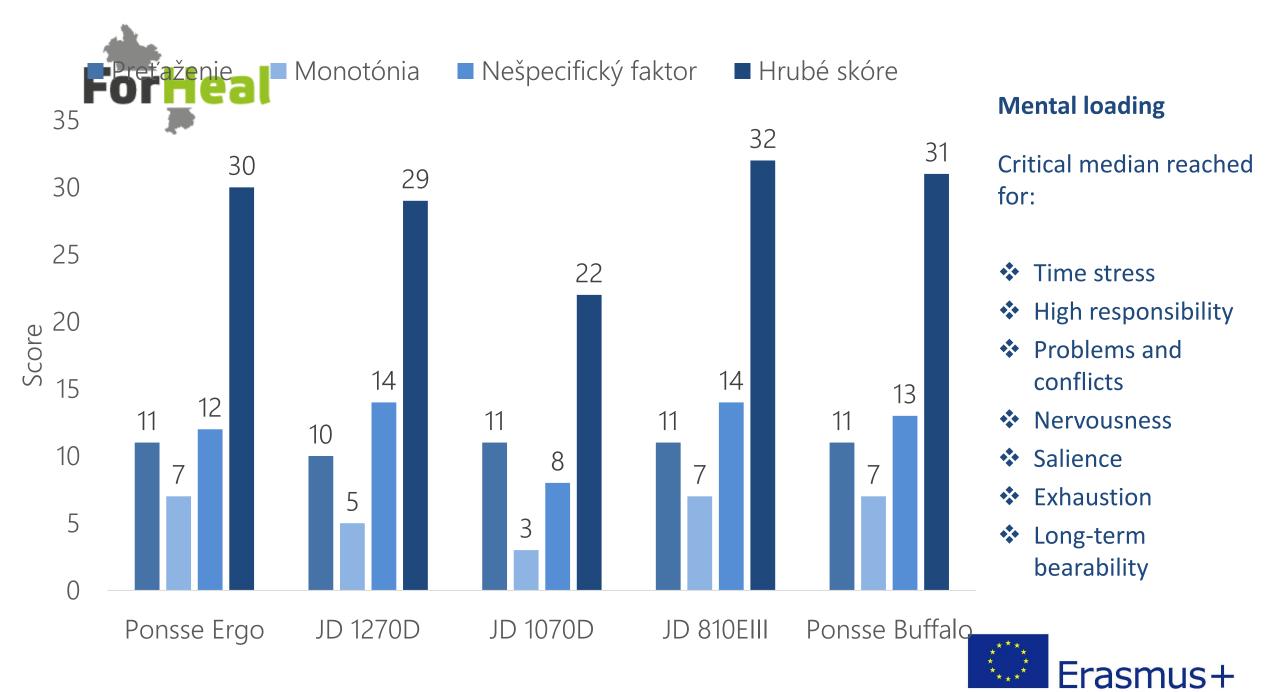
Mental loading

ForHeal



a_mom [m/s^2]

ForHeal


Forestry Higher Education Advancement in Laos

Erasmus+

Season	Shift part	E _{mean} (Ix)	t _o (°C)	Microclimate and illumination
	Start	223	14	
Spring	Mid	879	17	Depend on part of shift
	End	45	16	Shire
	Start	2886	19	Depend on season
Summer	Mid	2486	26	
	End	3301	28	
	Start	465	15	
Fall	Mid	10114	19	
	End	795	20	Erasmus+

ForHeal

Forward stepwise analysis

Model construction

Multiple regression and correlation analysis

Model equation

Variable	Step	Multiple R	Mult. R ²	Change R ²	F for integr. eradication	р	Integrated variables
X ₈	1	0,412239	0,169941	0,169941	138,3998	0,000000	1
x ₁	2	0,507839	0,257900	0,087959	80,0061	0,000000	2
x ₅	3	0,526194	0,276880	0,018980	17,6905	0,000030	3
X ₂	4	0,537048	0,288421	0,011541	10,9152	0,001004	4
x ₆	5	0,544584	0,296572	0,008151	7,7867	0,005413	5
X ₄	6	0,566445	0,320860	0,024288	23,9970	0,000001	6

Statistically significant values are bold

- Sample n 678 cases
- Six independent variables integrated into the model

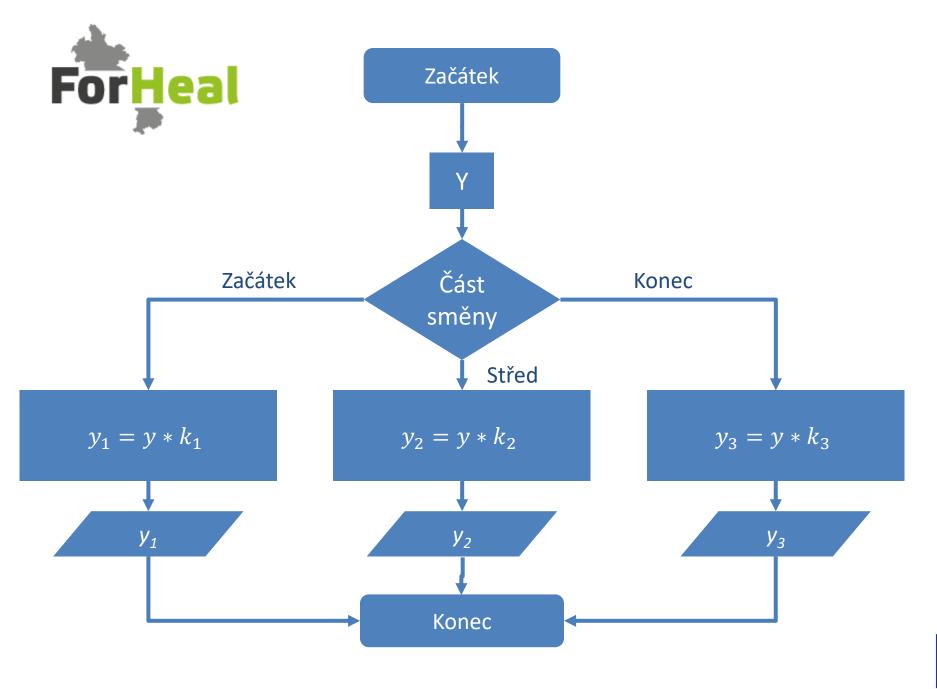
Erasmus+

ForHeal

R = 0.57 R² = 0.32 Upr. R² = 0.31 F = 52.836 p < 0.0000 S_x = 0.35835

		Mean Beta				
Variable	Beta	dev.	В	Mean B dev.	t (671)	р
intercept			-1,47563	0,225469	-6,5447	0,000000
X ₈	0,249274	0,043212	0,00772	0,001338	5,76863	0,000000
x ₁	0,215898	0,033738	0,57822	0,090358	6,39922	0,000000
X ₅	-0,152023	0,032748	-0,00002	0,000003	-4,64226	0,000004
x ₂	0,096786	0,032857	0,00636	0,002160	2,94569	0,003334
x ₆	0,231390	0,043613	0,02392	0,004509	5,30552	0,000000
X ₄	-0,231711	0,047301	-0,02193	0,004476	-4,89868	0,000001

Statisticky významné hodnoty jsou označeny tučným písme


ForHeal

 $y = 1.47563 + 0.57822x_1 + 0.00636x_2 - 0.02193x_4$ $-0.00002x_5 + 0.02392x_6 + 0.00772x_8$

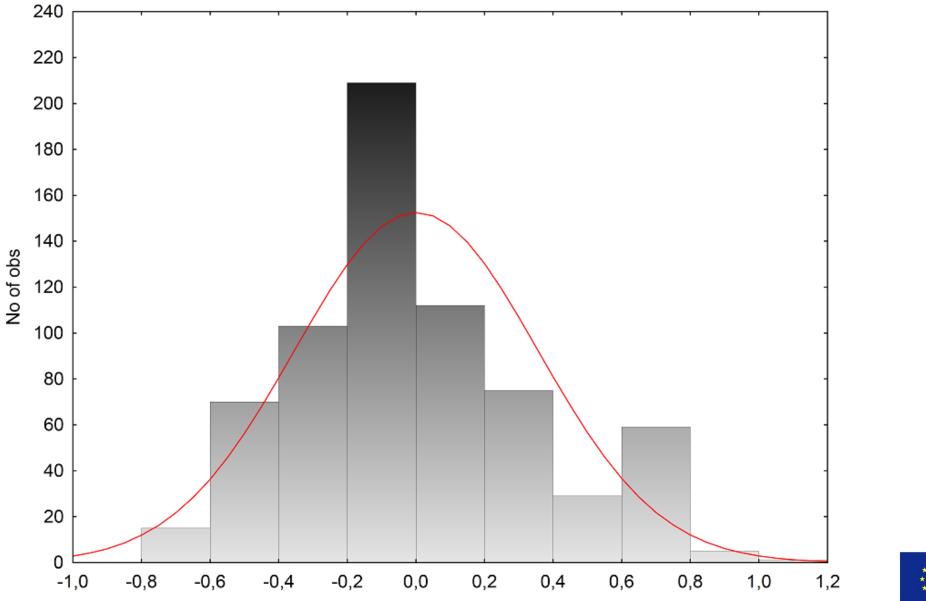
- y dependent variable,
- x_1 norm. whole-body vibrations acceleration (m.s⁻²),
- x_2 equivalent noise pressure level (dBA),
- x_4 temperature in the cab (°C)
- x_5 mean illumination of the cab (lx),
- x_6 Meister questionnaire output,
- x_8 weight of the operator (kg).

Algoritmization of the model for part of shift

Part of shift significantly affected y

Model Algoritmization through coefficients $k_1 = 1.26$ $k_2 = 0.69$ $k_3 = 0.97$

Effect	SS	Degree of freedom	Mean Squares	F	р
Model	40.7090	6	6.784827	52.83564	0.00
Rezidual	86.1657	671	0.128414		
Sum	126.8746				


Significant values are bold

• Model explained a significant part of the variability of y

Distribution of Raw residuals

Expected Normal

Residuals distribution

Residuals distribution is normal

Minor abnormality in the 0.6 – 0.8 interval.

44

End of Day 3

THANK YOU FOR YOUR ATTENTION

ForHeal